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Prior studies have demonstrated the effect of diazoxide in protecting against apoptosis via 

mitochondrial KATP channel opening in vitro.  The current investigations are designed to 

determine if sildenafil, a phosphodiesterase-5 inhibitor and known mitochondrial KATP 

channel opener, would protect against chronic doxorubicin cardiomyopathy both in vivo 

and in vitro. 
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Male ICR mice were randomized to 1 of 4 treatments: saline, sildenafil (0.7 mg/kg IP), 

doxorubicin (5 mg/kg IP), and sildenafil (0.7 mg/kg IP)+doxorubicin. Apoptosis was 

determined using the terminal deoxynucleotidyl transferase–mediated dUTP nick-end 

labeling and in situ oligo ligation methods. Desmin distribution was determined via 

immunofluorescence. Bcl-2 was analyzed by Western blot. Left ventricular function was 

measured in Langendorff mode. Electrocardiographical analysis measured changes 

indicative of doxorubicin cardiotoxicity (ST-prolongation). In vitro studies using adult 

ventricular cardiomyocytes were exposed to doxorubicin (1 µM), sildenafil (1 µM) with or 

without NG-nitro-L-arginine methyl ester (L-NAME; 100 µM)), or 5-hydroxydecanoate (5-

HD; 100  µM)) 1 hour before doxorubicin and incubated for 18 hours.  

 

Doxorubicin-treated mice demonstrated increased apoptosis and desmin disruption, which 

was attenuated in the sildenafil+doxorubicin group. Bcl-2 decreased in the doxorubicin 

group but was maintained at basal levels in the sildenafil+doxorubicin group. Left 

ventricular developed pressure and rate pressure product were significantly depressed in 

the doxorubicin group but attenuated in the sildenafil+doxorubicin group. ST-interval 

significantly increased in the doxorubicin group over 8 weeks. In the 

sildenafil+doxorubicin group, ST-interval remained unchanged from baseline. Doxorubicin 

significantly increased apoptosis, caspase-3 activation, and disruption of mitochondrial 

membrane potential in vitro. In contrast, sildenafil significantly protected against 

doxorubicin cardiotoxicity; however, protection was abolished by both L-NAME and 5-

HD. Cell viability studies using spectrophotometer and flow cytometric techniques 
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demonstrated that sildenafil did not affect the antitumor efficacy of doxorubicin in PC-3 

cells in vitro.  In fact, flow cytometry data indicate that sildenafil, when combined with 

doxorubicin, was synergistic in the antineoplastic action of doxorubicin.  

 

Prophylactic treatment with sildenafil prevented apoptosis and left ventricular dysfunction 

in a chronic model of doxorubicin-induced cardiomyopathy.   Moreover, these studies 

provide relevant clinical data on the safety and efficacy of sildenafil, leading the way for 

clinical trials in humans receiving doxorubicin chemotherapy.   
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BACKGROUND 

 
 

Heart failure remains a leading cause of morbidity and mortality in the United States, 

affecting approximately 5 million Americans; particularly those age 65 and older.  In 

1995, Medicare spent an estimated $3.4 billion dollars for the treatment of heart failure.  

In 2004, this number increased to $28 billion dollars.  A continually aging population is 

expected to result in a greater number of people afflicted with heart failure, requiring 

costly long-term medical management with unpredictable effect on quality of life [1]. 

 

Etiologies of heart failure development are numerous and involve complex molecular 

mechanisms, not entirely understood.  However, recent advances have expanded our 

knowledge and understanding of the cellular and molecular mechanisms involved in the 

development of heart failure.  For example, progress in primary and secondary prevention 

of coronary artery disease has improved the ability of physicians to target at-risk 

populations who may benefit from early treatment and lifestyle modifications aimed at 

reducing myocardial infarction and the development of ischemic cardiomyopathy.  In 

contrast, prevention of nonischemic cardiomyopathy remains a challenge.  Moreover, 

successful treatment is often palliative unless the patient is able to receive an orthotopic 

heart transplant.  Left ventricular assist devices offer promise as a bridge to 
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transplantation or as destination therapy.  However, despite these modern biomedical 

innovations, a cure is not attainable and both life expectancy and quality of life are 

unpredictable. 

 

Over thirty years ago, the introduction of the anthracycline antibiotics markedly shifted 

the momentum in the battle against cancer.  Doxorubicin, one of the most widely used 

anthracyclines, continues to be a powerful weapon in the treatment of many human 

neoplasms, including Kaposi’s Sarcoma, acute leukemias, lymphomas, stomach, breast, 

and ovarian cancers [2].  Despite its clinical efficacy, doxorubicin is associated with a 

delayed and progressive cardiomyopathy often presenting more than 20 years after 

treatment cessation [3,4,11].  The underlying mechanism of chronic doxorubicin-induced 

cardiomyopathy occurs primarily via the generation of reactive oxygen species (ROS) in 

the cardiomyocyte mitochondria—a mechanism that is separate from its antineoplastic 

activity, which occurs primarily through inhibition of topoisomerase II [5].  Additionally, 

numerous studies involving both in vitro and in vivo models of heart failure link ROS to 

cardiomyocyte apoptosis [6-9].  In fact, it is hypothesized that apoptosis plays a role in 

the development of heart failure via mechanisms that contribute to cardiomyocyte loss, 

eventually leading to structural changes maladaptive to normal cardiac physiological 

demands [10].  Over the past three decades, significant research has focused on 

unraveling this conundrum.  More recently, a prospective study evaluating cardiac 
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abnormalities in childhood survivors of cancer 15 years or more after treatment with 

doxorubicin, demonstrated an increased incidence of cardiomyopathy at doses much 

lower than the current acceptable total cumulative dose of approximately 450 mg/m2 

[11,12].  In fact, the prevalence of severe cardiac dysfunction was found in more than six 

percent of patients at 15 years post-treatment at doses less than 250 mg/m2.  Moreover, 

the mean prevalence of severe cardiac dysfunction in patients receiving more than 250 

mg/m2 was found to be 19% at 25 years after treatment.  Overall, after an average 

follow-up of 18 years, 39% of childhood cancer survivors treated with doxorubicin 

exhibited severe cardiac dysfunction.  Additionally, severe cardiac dysfunction was 

identified in 6% of patients who had no prior clinical history of cardiac failure with doses 

of doxorubicin at or above 150 mg/m2 without evidence for threshold.  [11] 

 

Despite advances in understanding this disease process at the cellular and molecular 

level, prophylactic pharmacological agents are lacking.  Because of the potency, broad 

spectrum, and efficacy of doxorubicin in treating many malignancies today, coupled with 

the difficulty in treating patients with doxorubicin-induced cardiomyopathy, it is 

imperative that the development of novel approaches aimed at prevention of 

cardiotoxicity is aggressively pursued.  The ideal agent must prevent cardiotoxicity while 

maintaining effective anti-neoplastic activity
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PHARMACOLOGY OF DOXORUBICIN 

 

Mechanism 

Doxorubicin is an anthracycline antibiotic, isolated from Streptomyces peucetius var 

caesius.  There are three major actions that account for the anti-neoplastic activity and 

toxicity of doxorubicin: (1) high affinity DNA binding via intercalation and interaction 

with topoisomerase II, ultimately blocking the synthesis of both DNA and RNA; (2) 

binding to cellular membranes with alteration of fluidity and ion transport; and (3) redox 

cycling of doxorubicin to its semiquinone free radical with subsequent generation of 

oxygen radicals.   Additionally, several hypotheses have been proposed to explain the 

acute and chronic cardiotoxicity of doxorubicin; these include formation of free radicals, 

inhibition of enzymes and proteins, changes in cardiac muscle gene expression, 

alterations of mitochondrial membrane function, sensitization of Ca2+ release from 

sarcoplasmic reticulum channels, mitochondrial DNA damage, and dysfunction.  [12-

15,58]  

 

It is thought that doxorubicin alone is responsible for acute cardiotoxicity. In contrast, 

chronic cardiotoxicity is believed to be a result of chronic, perpetual redox cycling of 

doxorubicin in the mitochondria—a process that continues long after serum 

concentrations become undetectable.   
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Pharmacokinetics 

In the clinical setting, doxorubicin is administered by intravenous (IV) injection.  The 

usual dose is 60 mg/m2 IV every three weeks to a maximum dose of 450-550 mg/m2.  

However, smaller, more frequent doses (once per week) are commonly used depending 

on type of malignancy, overall chemotherapeutic regimen, prior history of anthracycline 

exposure, and cardiac risk factors.  After IV administration, peak serum concentrations of 

doxorubicin are attained rapidly.  Thirty minutes after infusion, serum concentration 

drops by approximately 50%.  However, significant levels persist for up to 20 hours.  The 

main route for doxorubicin metabolism is via the liver where it undergoes reduction and 

hydrolysis of ring substituents.  The alcohol metabolite of doxorubicin, doxorubicinol, is 

pharmacologically active.  In contrast, the aglycone derivative is an inactive metabolite.  

The majority of doxorubicin and its metabolites are excreted in the bile with a minute 

amount excreted in the urine.  Enterohepatic recirculation of toxic metabolites occurs 

during biliary excretion.  Therefore, dose reduction needs to be considered in patients 

with hepatic disease or elevated hepatic transaminases.  [16] 
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CELLULAR AND MOLECULAR MECHANISMS OF DOXORUBICIN 

CARDIOTOXICITY 

 
Multiple studies substantiate the major role that reactive oxygen species (ROS) play in 

the development of heart failure both in vivo and in vitro [17,18].  In fact, substantial 

evidence exists implicating the generation of ROS as the underlying mechanism for the 

development of dilated cardiomyopathy and heart failure from multiple etiologies 

including chemotherapy-induced [14,17,18].  Moreover, prior studies have identified the 

mitochondria as the main target of doxorubicin accumulation in cardiac cells [19].  In 

fact, mitochondrial concentrations of doxorubicin (5-50 uM) are several-fold greater than 

simultaneous clinically relevant serum concentrations (0.1-1 uM) [20].  

Mitochondrial NADH dehydrogenase is a major contributor to doxorubicin-generated 

reactive oxygen species (ROS) production via redox cycling of doxorubicin to its 

semiquinone [21, Figure 1].  

 

Figure 1A. Redox cycling of doxorubicin                                                                                                                                     

& formation of Superoxide. 

              #  2005 Patrick William Fisher, DO, PhD 
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Figure 1B. Redox cycling of doxorubicin and formation of ROS & RNS.  

#  2005 Patrick W. Fisher, DO, PhD 

 

It is therefore, not surprising that high mitochondrial concentrations of doxorubicin, 

relative to simultaneous serum concentrations, rapidly perpetuates the formation of free 

radicals.  Compared with other organs such as the liver, the heart possesses a relatively 

limited supply of catalase and glutathione peroxidase (GSH-Px), key intracellular free 

radical scavengers.  Because of chronic doxorubicin free radical production in the heart, 

the supply of both GSH-Px and catalase is rapidly expended; thus, creating an 

environment that promotes hydroxyl radical production [22].  

      NO 
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Accordingly, the accumulation of ROS results in dissipation of the mitochondrial 

membrane potential (!"m), direct activation of the mitochondrial permeability transition 

pore (MPTP), and release of cytochrome-c with subsequent activation of caspase-9 and 

caspase-3 followed by DNA fragmentation consistent with apoptosis [34]. 

 

 

 

Figure 2.  Cell signaling pathways involved in doxorubicin-induced cardiotoxicity. 

#  2005 Patrick W. Fisher, DO, PhD 



www.manaraa.com

 

9 

APOPTOSIS 

 

 

It is well known that doxorubicin-induced cardiomyocyte apoptosis occurs via both the 

extrinsic and intrinsic pathways [23,24].  However, it remains unknown whether one 

pathway is more important than the other in respect to doxorubicin-induced cardiomyocyte 

apoptosis.  However, recent studies substantiate the significance of the intrinsic pathway of 

apoptosis in this pathophysiological process [25,26]. 

 

Apoptosis, commonly known as programmed cell death, is a regulated cellular process 

dependent on ATP [27].  It results in cell death for reasons that often are required in 

maintaining normal physiological function in many species.  For example, apoptosis plays 

an important role in the degeneration of the human thymus gland.  Additionally, apoptosis 

is critical in sloughing of intestinal epithelial tissue, which rapidly turns over multiple 

times a year in humans [28].  Distinguishing apoptotic cell death from necrotic cell death 

and DNA repair mechanisms has remained controversial [29].  However, it is now possible 

to delineate these two very different modes of cell death through the implementation of 

several sensitive and specific assays.  The most well defined method for determining 

apoptosis from necrosis is by morphological evaluation [30].  Apoptosis is recognized by a 

series of well-defined morphological changes that differ from necrotic cell death [31].  In 

apoptosis, common morphological findings include condensed heterochromatin often 

observed in the perinuclear regions of the cardiomyocyte, cell shrinkage, nuclear pyknosis, 

and late fragmentation into apoptotic bodies [31].  In contrast, necrotic cell death is 
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characterized by cell membrane disruption and release of intracellular contents that are 

toxic to surrounding cells and tissues [31]. 

 

Apoptosis contributes to the development of heart failure via mechanisms that contribute 

to a loss of cardiomyocytes over time, leading to structural changes that often are 

maladaptive to normal cardiac physiological demands [6,10].  Furthermore, it is also 

suggested that the major difference between whether cells undergo apoptosis versus 

necrosis is the cellular availability of ATP [32].  Since apoptosis is an energy dependent 

process requiring ATP, cells originally destined for programmed cell death may undergo 

necrotic cell death if depleted of adequate ATP stores [32].  

 
Extrinsic Pathway of Apoptosis [Figure 3] 

 

The extrinsic pathway is initiated via binding of a death ligand to a cell surface receptor.  

The ligand is usually one of two different types.  The Fas ligand (Fas-L), otherwise known 

as CD95 or Apo-1, is an integral membrane protein found on the surface of another cell (T-

Lymphocyte).  On the other hand, a ligand may exist as an extracellular protein such as 

tumor necrosis factor-alpha (TNF-$).  Upon ligand-receptor binding, the death-inducing 

signaling complex (DISC) is formed.  For example, the binding of Fas-L to the Fas 

receptor results in recruitment of the Fas-associated death domain (FADD).  Consequently, 

the recruitment of caspase-8 by FADD results in cleavage of the procaspase to its active 

form.  Activated caspase-8 can directly activate caspase-3 while completely bypassing the 

mitochondrial death pathway.  However, active caspase-8 can also activate the BH3 
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interacting death domain agonist (Bid), a proapoptotic Bcl-2 (B cell leukemia/lymphoma-

2) protein, which links the extrinsic to the intrinsic pathway of apoptosis. Both in vivo and 

in vitro studies of acute doxorubicin cardiotoxicity have demonstrated involvement of both 

TNF-alpha and FAS/FAS-L in this process.  [33,34, Figure 3] 

 
 

Figure 3. Simplified Version of the Entrinsic Pathway of Apoptosis in Doxorubicin 

Cardiotoxicity and the Illustration of the Key Link Betweeen Extrinsic and Intrinsic 

Pathways. #  2005 Patrick W. Fisher, DO, PhD 
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Intrinsic Pathway of Apoptosis [Figure 4] 

 
The intrinsic pathway of apoptosis is more complex than the extrinsic pathway and is 

stimulated by a multitude of various extracellular stimuli and intracellular signaling 

mechanisms [33,36].  Extracellular stimuli include growth-factor withdrawal or complete 

deficit of trophic factors or nutrients, ionizing radiation, and chemicals such as toxins.  

Intracellular stimuli include oxidative stress, DNA damage, physical stress on the cytosolic 

matrix proteins that provide a support or scaffold for cells such as myocytes, or oxidation 

of fatty acids.  The result of activation of the intrinsic pathway of apoptosis is the release 

of pro-apoptotic proteins, such as cytochrome-c and apoptosis-inducing factor (AIF), into 

the cytosol with activation of caspases and subsequent DNA fragmentation [36]. 
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Figure 4. Simplified Illustration of the Intrinsic Pathway of Apoptosis in Doxorubicin 

Cardiotoxicity.  # 2005 Patrick W. Fisher, DO, PhD 
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KEY MEDIATORS OF APOPTOSIS 

 

Caspases 

Caspases belong to the class of cysteine proteases that cleave substrates after aspartic acid 

residues.  They play a critical role in apoptosis.  Moreover, caspases are synthesized as 

inactive zymogens known as procaspases.  Procaspases contain an N-terminal prodomain 

and a C-terminal catalytic domain.  The catalytic domain consists of a 20 kDa (p20) and a 

10 kDa (p10) subdomain. Caspases can further be divided into upstream versus 

downstream caspases.  Upstream caspases include caspases 2, 8, 9, 10, and 12.  

Downstream caspases include caspases 3, 6, and 7.  These caspases are then converted to 

their respective active forms by proteolytic cleavage after aspartic acid residues, located 

between the prodomain, p20, and p10 subunits.  Caspase-3 is a key effector in the 

apoptotic pathway, amplifying the signal from initiator caspases (such as caspase-8) and 

signifying full commitment to cellular disassembly.  In addition to cleaving other caspases 

in the enzyme cascade, caspase-3 has been shown to cleave poly (ADP-ribose) polymerase 

(PARP), DNA-dependent protein kinase, protein kinase C!, actin, and intermediate 

filaments such as desmin.  Caspase-8 plays a critical role in the early cascade of apoptosis, 

acting as an initiator of caspase activation; whereas, caspase-9 is an integral component of 

the intrinsic pathway of apoptosis where it cleaves procaspase-3 to its active form.  [35,37] 
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Figure 5.  Illustration of caspase-3 and associated subunits.  

# 2005 National Library of Medicine. 

 

In addition, the cleavage of the pro-caspase to its active form has long been regarded as an 

irreversible marker of commitment to apoptotic cell death.  However, more recent studies 

have demonstrated the ability of NO, at physiological concentrations, to directly, but 

reversibly, inactivate caspase-3 (activated cleaved form) via s-nitrosylation at the cysteine 

residue on the p17 subunit [68,71]. 
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Bcl-2 Family of Proapoptotic and Antiapoptotic Proteins 

Bcl-2 is a key regulator of apoptosis and is essential for proper development, tissue 

homeostasis, and elimination of exogenous toxic stimuli.  Bcl-2 is a 26 kDa, anti-apoptotic 

protein, which promotes cell survival via interactions with anti-apoptotic Bcl-2 family 

members.  These include Bax, Bak, Bik, Bad, and Bid.  One of the major functions of Bcl-

2 is prevention of cell death through its ability in blocking the release of cytochrome-c 

from the intramembrane space of the mitochondria.  Bax and Bak are multidomain 

proapoptotic Bcl-2 proteins.  Either Bax or Bak is required for all instances of apoptosis 

mediated via the intrinsic pathway.  Their interaction at the mitochondrial membrane 

contact site contributes to the formation of the voltage-dependent anion channel, or 

VDAC—facilitating the release of cytochrome-c to the cytosol.  [38-41]  

 

Cytochrome-c  

Cytochrome-c is an electron transport protein essential in aerobic energy conversion.  It is 

found in the mitochondrial intermembrane space in mammalian species.  Cytosolic 

cytochrome-c is a key mediator in the intrinsic pathway of apoptosis.  For example, the 

release of cytochrome-c to the cytosol results in the formation of the apoptosome and 

activation of downstream caspase-3; consequently leading to interaction of activated 

caspase-3 with nuclear dsDNA resulting in DNA fragmentation characteristic of apoptosis 

[38,41]. 
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Mitochondrial membrane potential ("m) & Mitochondrial KATP Channels 

The collapse of "%m is a prominent feature of apoptosis, representing an irreversible 

marker of cellular commitment to apoptotic cell death [42].  Moreover, breakdown of the 

mitochondrial membrane potential (""m) may precede nuclear signs of apoptosis, and it 

may be associated with Ca2+ homeostasis.   

Prior research using the mitoKATP channel opener, diazoxide, demonstrated a link between 

mitoKATP channel opening and preservation of mitochondrial integrity, maintenance of 

mitochondrial membrane potential, and inhibition of cytochrome-c translocation to the 

cytosol following in vitro oxidative stress [43].  Moreover, the opening of mitoKATP 

channels is critical in mediating the cardioprotective effect induced by pathophysiological 

stressors and pharmacological agents.  The activation of these channels is triggered by a 

drop in tissue ATP levels, which result in preventing the dissipation of the mitochondrial 

membrane potential and inhibition of apoptosis [43,44]. 

Furthermore, studies by Marban et al have shown that opening of mitochondrial KATP 

channels by diazoxide induced a cardioprotective effect, which was abolished by 5-

hydroxydeconate (5HD), an inhibitor of the mitoKATP channel [44].  These findings have 

been reported in several other studies of ischemia/reperfusion injury in animal models 

where post-ischemic functional recovery significantly improved and infarct size was 

reduced [42]. 
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Because of the key role of mitochondrial bioenergetics in cellular respiration and in 

mitigating apoptosis, it is a promising target for potential development of novel therapeutic 

applications in cardioprotection. 

 

Intermediate filaments and Mitochondrial Permeability Transition Pore (MPTP) 

Formation 

Intermediate filaments play an integral role in cellular structure and function.  Desmin, an 

intermediate filament found in cardiomyocytes is localized to the Z-line where it supports 

cellular integrity and stabilization of actin filaments [Figure 6A].  Moreover, desmin 

integrates physical contraction of the myofibril via its linkage to adjacent myofibrils.  In 

addition to attachment to the Z-line, desmin also tethers the myofibrils to the sarcolemma, 

nuclei, and to the mitochondria [Figure 6B].  In fact, desmin attaches to the mitochondrial 

membrane contact sites, the same location where the VDAC and mitochondrial 

permeability transition pore (MPTP) are formed [45].  Furthermore, desmin plays a vital 

role in protecting the structural integrity of the myofibrils during mechanical stress.  It is 

conceivable that disruption of desmin either through repeated strain on the contractile 

apparatus resulting from impaired contractility or through direct cleavage from activated 

caspases may contribute to MPTP formation, cytochrome-c release, and apoptosis [Figure 

6].  [45-51]   

 

Although it is known that cardiomyocyte apoptosis contributes to dilated cardiomyopathy 

and heart failure, there is increasing evidence that intermediate filaments such as desmin 
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are involved in this pathological process [45].  Recently, Dinsdale et al [46] demonstrated 

caspase-cleavage of intermediate filaments during apoptosis, which subsequently formed 

intracytoplasmic aggregates.  Moreover, a study using a transgenic mouse model (desmin -

/-) of desmin-related cardiomyopathy (DRM) demonstrated the ability of Bcl-2 

overexpression in preventing DRM as evidenced by prevention of cardiomyocyte 

apoptosis and preservation of cardiac contractility [45].  In addition, Wang et al [47] 

demonstrated the disruption of desmin and formation of intracytoplasmic aggregates in a 

mouse model of desmin-related cardiomyopathy.  Furthermore, Heling et al [48] illustrated 

the disorganization and accumulation of desmin in explanted human heart specimens from 

patients with dilated cardiomyopathy.  

 

Morphological changes including disruption of normal desmin distribution in myocytes as 

observed in DRM are similar to those seen in other forms of cardiomyopathy and heart 

failure [49].  Because intermediate filaments participate in the transmission of active force 

[50], it is plausible that disruption of the filamentous network involving desmin may 

significantly impair contractile force and result in sarcomere fragility. 
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Figure 6A.  Main Intermediate Filaments and Cytoskeletal Proteins Linking the Extracellular Matrix with 

the Structural Muscle Proteins Associated with Mutations Causing Cardiac and Skeletal Myopathy.   

& 2000 Massachusetts Medical Society, Dalakas, MC et al. N Engl J Med 2000; 342: p778. 
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Figure 6B.  Role of desmin in myofibrillar integrity. The mechanism of caspase-3 
cleavage of desmin is depicted.  Caspase-3 cleavage of desmin results in disruption of 
normal contractile function and propagation of apoptosis via its interaction with the 
mitochondria at the site of the MPTP (mitochondrial contact sites).  
#  2005 Patrick W. Fisher, DO, PhD 

 

 

 
. 
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MECHANISMS FOR PREVENTION OF DOXORUBICIN-INDUCED 

CARDIOTOXICITY 

 

Free Radical Scavengers & Iron Chelators 

Most studies focusing on the development of pharmaceuticals aimed at preventing 

doxorubicin cardiotoxicity have targeted mechanisms involved in production of free 

radicals.  Despite some success in pre-clinical experiments, many of these agents have 

significant clinical disadvantages.  For example, probucol, a lipid-lowering antioxidant, 

confers significant protection against doxorubicin-induced cardiotoxicity [56].  However, 

concerns about its high-density lipoprotein lowering properties and its potential to cause 

QT-interval prolongation discourage its application in cancer patients [57].  The 

cytoprotective drug amifostine is less potent than dexrazoxane (Zinecard), an iron chelator, 

and it does not prevent the mortality and weight loss caused by doxorubicin in 

spontaneously hypertensive rats [57,58].  In fact, it has also been shown to have some 

benefit on prevention of acute doxorubicin cardiotoxicity but not on chronic cardiotoxicity 

[59].  Finally, dexrazoxane, the only cardioprotective drug currently available clinically, 

only reduces 50% of doxorubicin-related cardiac complications [60].  Moreover, it 

interferes with the antitumor activity of anthracycline antibiotics and potentiates the 

hematotoxicity of doxorubicin [60]. 
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Other potential pharmacological agents are free radical scavengers such as melatonin and 

5-hydroxymethylrutoside.  However, these agents have limitations in respect to dose and 

frequency and concentration.  Furthermore, clinical investigations are necessary to prove 

their efficacy and safety in humans.  [52,58]  

 

 

Type-5A Phosphodiesterase Inhibition 

Type-5 phosphodiesterase enzyme inhibitors are a class of drugs currently used clinically 

to treat erectile dysfunction and pulmonary hypertension [71].  Because of the mechanism 

of action, these agents show promise for potential targeting of cellular mechanisms that 

promote doxorubicin-generated free radicals.   

Phosphodiesterase enzymes convert the intracellular second messengers cyclic AMP and 

cyclic GMP to the corresponding nucleotides AMP and GMP. There are now 11 

phosphodiesterase families, many of which exist as splice variants. The cAMP-specific 

enzymes include phosphodiesterase 4 (PDE4), -7 and -8. The cGMP-specific PDE’s are 

PDE5, -6 and -9, whereas PDE1, -2, -3, -10 and -11 use both cyclic nucleotides [35]. Most 

known PDE5 inhibitors compete with the substrate cGMP for binding to the protein at the 

catalytic site. Although cGMP binding to the catalytic site stimulates cyclic-nucleotide 

binding to the allosteric sites, inhibitors do not elicit the same property, and Ser92 

phosphorylation has no effect on inhibitor binding.  PDE5 is the primary cGMP-

hydrolyzing activity in human corpus cavernosum tissue. [60] 
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Vasodilatory Effects of cGMP 

Intense research in vascular smooth muscle physiology beginning more than two decades 

ago lead to the discovery of sildenafil citrate, the first synthetic PDE-5 inhibitor for the 

treatment of erectile dysfunction in men.  Initial clinical studies using sildenafil focused on 

its efficacy in treating systemic hypertension and coronary angina.  The hypothesis behind 

these early investigations stemmed from the theory that elevating cGMP levels via PDE-5 

inhibition would result in systemic arterial vasodilatation.  Although the results from early 

studies using sildenafil for the treatment of coronary angina were disappointing, the side-

effect of penile erection, reported by many patients enrolled in this trial, inspired an 

exciting new area of research leading to advancement in the treatment of patients with 

erectile dysfunction [61,62]. 

 

Erection or tumescence is a neurovascular reflex mediated by smooth muscle 

relaxation/contraction in cavernosal tissue [63].  Cavernosal smooth muscle cells are 

normally in a “contracted state”, mediated via $-adrenergic neural stimuli with subsequent 

phosphorylation of Ca+2/calmodulin-dependent myosin light chain kinase.  In contrast, 

tumescence is stimulated by parasympathetic CNS output via neural release of 

acetylcholine.  Consequently, NO is released from non-adrenergic, non-cholinergic 

cavernosal nerves subsequently activating soluble guanylyl cyclase, the enzyme that 

converts GTP to cGMP.  The cyclic nucleotide then stimulates protein kinase G (PKG), 

which initiates a protein phosphorylation cascade.  This results in a decrease in 
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intracellular levels of calcium ions, leading ultimately to dilation of the arteries that bring 

blood to the penis and compression of the spongy corpus-cavernosum. This compression 

contracts veins, reduces outflow of blood, and increases intracavernosal pressure, 

ultimately resulting in tumescence.  A PDE-5 inhibitor will retard enzymatic hydrolysis of 

cGMP to 5’GMP in the human corpus cavernosum, leading to the same outcome. [63] 

 

Role of Nitric Oxide (NO) 

 

Nitric Oxide is well recognized as a key mediator in cell signaling processes.  It is 

produced from L-arginine through chemical reaction catalyzed by at least four major 

isoforms of NOS, i.e. neuronal (nNOS), inducible (iNOS), endothelial (eNOS), and 

mitochondrial NOS (mtNOS). In cellular studies, treatment with doxorubicin at 5 #M for 

24 h increased the amount of iNOS protein without affecting either eNOS or nNOS 

expression in H9C2 rat cardiac cells [105]  The reduction in cardiac contractility in animals 

given doxorubicin at 20 mg/kg i.p., was associated with a 3-4 fold increase in the 

immunopositivity of myocardial iNOS (33±18 vs. 9±2%) and 3-nitrotyrosine formation 

(56±24 vs. 0.3±0.4%) compared with the control group [106].   Pacher et al [107] reported a 

decrease in ejection fraction and cardiac output which coincided with the increase in 

cardiac nitrotyrosine synthesis in mice 5 days after the administration of doxorubicin at 25 

mg/kg (IP).  In these studies, iNOS (–/–) mice treated with doxorubicin displayed improved 

cardiac function versus iNOS (+/+) litters. These findings suggest that the production of 

peroxynitrite (ONOO-) by anthracyclines via iNOS was the critical mechanism of drug-
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induced cell injury in myocytes.  In addition, it is suggested that elevated eNOS expression 

and subsequent NO synthesis in bovine aortic endothelial cells was a result of doxorubicin-

induced hydrogen peroxide production.  

 

Pharmacology of Sildenafil 

Sildenafil citrate (Viagra ®) is an orally administered drug used for the treatment of 

erectile dysfunction in men.  It is a potent type-5 phosphodiesterase inhibitor, which blocks 

the breakdown of cGMP.  In humans, sexual arousal or stimulation results in release of NO 

from penile vascular tissue increasing cGMP production with a subsequent cascade of 

events resulting in: (1) vascular smooth muscle relaxation in the corpus cavernosa, (2) 

engorgement of the lacunae, (3) compression of veins involved in draining blood from 

cavernosal tissue, and ultimately (4) penile rigidity.  [63] 
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Pharmacokinetics of Sildenafil 

After oral administration, sildenafil reaches peak plasma concentration within 

approximately sixty minutes.  Oral administration results in a bioavailability of 

approximately 40% with 96% protein-bound.  The half-life of sildenafil ranges between 

three to five hours with clinical effects lasting 12 hours on average.  

Sildenafil is metabolized by the liver and primarily excreted in the feces with a small 

amount excreted in urine.  The primary hepatic metabolism occurs by microsomal P450 

enzymes (isoenzyme 3A4 and to a lesser extent, 2CA).  Dose adjustment is warranted in 

patients with hepatic disease, or who take any potent inhibitors of the P450 3A4 isoenzyme 

including: (1) ketoconazole, (2) cimetidine, or (3) erythromycin to name a few.  

Furthermore, because sildenafil is protein bound, caution should be used in patients taking 

medicine that is also highly protein bound such as digoxin, amiodarone, or warfarin.   

According to Shabsigh [61], the side-effect profile of sildenafil in patients with hepatic 

impairment or who currently take inhibitors of P450 3A4 isoenzymes did not differ from 

the general population despite significantly elevated plasma concentrations. 

 

In addition to studies in humans, sildenafil has been shown to enhance nitric oxide (NO)-

driven cGMP accumulation in the corpus cavernosum of rabbits without affecting cAMP 

formation. In the absence of NO drive, sildenafil had no functional effect on rabbit isolated 

corpus cavernosum but potentiated the relaxant effects of NO on these tissues.  

Furthermore, it has been shown that sildenafil causes mild to moderate decreases in 

systolic and diastolic pressure because of the inhibition of PDE-5 in smooth muscle cells in 
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the vascular bed.  Prior studies in our laboratory confirmed the mild effect of sildenafil on 

systemic hemodynamics in rabbits.  [64] 
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SPECIFIC AIMS 

 
In the present study, a series of novel investigations designed to examine the effect of 

PDE-5 inhibitors in preventing doxorubicin-induced cardiotoxicity in mice was proposed.  

Preliminary studies conducted in our laboratory by Fisher et al suggest the viability of our 

major hypothesis that PDE-5 inhibitors may confer significant protection against 

doxorubicin-induced cardiomyopathy, when administered in a prophylactic manner.  The 

purpose of this application is to show the effect of sildenafil on doxorubicin-induced 

cardiomyocyte apoptosis and to attain a better understanding of the potential signaling 

pathways in the heart that lead to cardioprotection in a chronic model of doxorubicin-

induced cardiotoxicity.  

 

Accordingly, the main goals of the present study were:  

 

1. To determine whether suppression of PDE-5 with the novel inhibitor, sildenafil, 

attenuates doxorubicin-induced cardiotoxicity and contractile dysfunction via inhibition 

of cardiomyocyte apoptosis in the heart. The effect of clinically relevant doses of 

sildenafil on doxorubicin-induced cardiomyocyte apoptosis both in vivo and in vitro, 

myocardial contractile dysfunction, and of Bcl-2 protein expression was investigated.  It 

was further that PDE-5 inhibition would inhibit doxorubicin-induced apoptosis via opening 

of mitochondrial KATP channels; thereby preventing the collapse of mitochondrial 

membrane potential (""m) and preventing opening of the mitochondrial permeability 

transition pore (MPTP). 
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2. To investigate if PDE-5 suppression will prevent myofibrillar disarray commonly 

associated with cardiomyopathies.  More specifically, the effect of prophylactic treatment 

with sildenafil, at clinically relevant doses, on doxorubicin-induced disruption of desmin in 

cardiomyocytes was examined.  Moreover, it was proposed that PDE-5 inhibition would 

attenuate the disruption of the normal desmin network in the heart, which is vital in 

maintenance of myofibrillar integrity and myocardial contractility.  Sildenafil-induced 

opening of mitochondrial KATP channels, preservation of the mitochondrial membrane 

potential, prevention of the MPTP formation, and subsequent caspase-3 activation 

followed by DNA damage consistent with apoptosis will demonstrate this.  The initial 

hypothesis suggested that the latter would be prevented by increased Bcl-2 protein 

expression ultimately inhibiting the translocation of Bax/Bad to the mitochondrial contact 

site where the MPTP is located. 

 

3.  To evaluate the effect of PDE-5 inhibition in preventing chronic doxorubicin-induced 

cardiotoxicity without affecting doxorubicin’s antineoplastic activity.  To test this 

hypothesis, the viability of PC-3 prostate cancer cells in vitro after treatment with 

sildenafil plus doxorubicin, sildenafil alone, and with doxorubicin alone was studied.  The 

initial hypothesis was that the efficacy of doxorubicin in killing PC-3 cells, at a clinically 

relevant dose (1uM), will not adversely affect prophylactic treatment with sildenafil.   
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The aforementioned studies are the first to demonstrate the protective effect of PDE-5 

inhibition in doxorubicin-induced cardiotoxicity in the heart at both the cellular and sub-

cellular level. Moreover, this is the first study to demonstrate the prevention of 

doxorubicin-induced cardiomyopathy coupled with the inability of sildenafil, at clinically 

relevant doses, in adversely affecting the antineoplastic activity of doxorubicin. 

 
Additionally, these  studies provide relevant data setting the foundation for clinical trials 
 
in humans receiving doxorubicin chemotherapy for hematological and/or oncological neoplasms.

 

Furthermore, these studies provide novel insights into expanding the utility of PDE-5 

 
inhibitors their current use in the treatment of erectile dysfunction (ED) in men.
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METHODS (In Vivo Model) 

 
   
All animal studies were performed in accordance with the guidelines of the National 

Institutes of Health (NIH) “Guide for the Care and Use of Laboratory Animals”, the 

American Physiological Society and the Virginia Commonwealth University. 

Adult male ICR mice (~33 grams each) were randomized to one of four groups.  Group 1 

saline only and served as a control.  Group 2 received sildenafil (0.7 mg/kg i.p.) one hour 

prior to the administration of an equivolume of saline in place of doxorubicin.  Group 3 

received an equivolume of saline one hour prior to doxorubicin (5 mg/kg i.p.).  Group 4 

received sildenafil (0.7 mg/kg i.p.) one hour prior to administration of doxorubicin (5 

mg/kg i.p, Sigma Chemicals, St. Louis, MO).  Animals were housed in a 12:12 hour 

light/dark cycle, temperature-controlled room. Diet consisted of normal mouse chow 

(Harlan, Indianapolis, IN) and water ad libitum.   
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Figure 7. Experimental protocol. Treatment was administered on days 0, 7, and 14. 

Groups II and IV were administered sildenafil 1 hour before either saline or doxorubicin, 

respectively. Group III received saline 1 hour before doxorubicin. ECG (lead II) was 

performed 2 days after each treatment and 1 week thereafter for 8 weeks. LV indicates left 

ventricular. 
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Cardiomyocyte Apoptosis 

 

 

Cardiomyocyte apoptosis was evaluated via the terminal dUTP nick-end labeling method 

(TUNEL) using the ApopTag® In Situ Apoptosis Detection Kit (Chemicon, Temecula, 

CA) according to the manufacturer’s instructions.  The quantification of apoptosis or 

Apoptotic Index (AI) was determined by counting TUNEL (+) myocyte nuclei from ten 

random fields per section and expressed as a percentage of total myocyte nuclei.  Because 

the TUNEL assay can detect DNA damage from non-apoptotic stimuli, complementary 

analysis was conducted using the ApopTag® In Situ Oligo Ligation (ISOL) technique 

(Chemicon, Temecula, CA).  The ISOL method uses T4 DNA ligase to specifically ligate 

DNAase Type I ends to biotin-labeled hairpin oligonucleotides.  The localization of 

oligonucleotides (labeled) is restricted to regions of chromatin characteristic for apoptosis.  

The ISOL method does not label nicks, gaps, or ssDNA, 3’recessed ends or 3’overhanging 

ends longer than one dT base.  These techniques have been used together for appropriate 

labeling of DNA characteristic of apoptosis [56,74-75]. 
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Desmin Immunofluorescence  

 

Distribution of desmin, an intermediate filament important in cellular integrity and 

myocyte contraction, was analyzed in frozen sections (5 #m) in animals from each of the 

experimental groups.  After appropriate fixation in 4% paraformaldehyde, samples were 

incubated for one hour with 10% normal goat serum. Next, primary goat anti-desmin 

antibody (Santa Cruz Biotech, Santa Cruz, CA), diluted 1:50 was applied to each slide and 

incubated for one hour at room temperature.  After several washes, Alexa Fluor 488 

donkey anti-goat secondary antibody (Molecular Probes, Eugene, OR), diluted 1:400 was 

applied to each slide.  Samples were incubated for one hour at room temperature.  After 

several washes in 1X PBS, Prolong Gold® Antifade (Molecular Probes, Eugene, OR) was 

applied followed by mounting with a glass coverslip.  Visualization of desmin distribution 

was accomplished using a Nikon epifluorescent microscope with a 60X oil objective and a 

FITC filter cube.  Image acquisition was obtained using MicroPublisher® 3.3 CCD camera 

with Q-Capture® Professional image analysis software (QImaging, Burnaby, B.C. 

Canada).   
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Analysis of BCL-2 Expression 

 
Mice whole heart proteins were extracted with RIPA buffer (Upstate™, Charlottesville, 

VA) and proteins were separated on SDS-PAGE and transferred onto 12% nitrocellulose 

membranes (Bio-Rad, Hercules, CA). Primary antibodies against Bcl-2 (Molecular weight: 

28kDa) were followed by secondary rabbit IgG-conjugated horseradish peroxidase 

antibody according to manufacturer’s instructions (Santa Cruz Biotech, Santa Cruz, CA).  

Antibodies against '-actin  (Molecular weight: 39 kDa) were used for determination of 

protein loading (Santa Cruz Biotech, Santa Cruz, CA).  Densitometry was performed using 

BioQuant® software (BioQuant, Nashville, TN). 

 

Hemodynamics 

 
Animals (n = 6/group) were sacrificed at 2,4 and 8 weeks after the last day of treatment 

(day 14).  After adequate anesthetization using pentobarbital (100 mg/kg i.p), the heart was 

excised and immediately placed in cold saline (4°C).  The heart was then cannulated via 

the aorta and retrogradely perfused at a constant perfusion pressure equivalent to 100 

cmH2O.  All hearts were perfused with modified Krebs-Henseleit (K-H) buffer at 37°C, 

containing (in mM) 118.5 NaCl, 25.0 NaHCO3, 3.2 KCl, 1.19 MgSO4, 1.25 CaCl2, 1.2 

KH2PO4, and 11 glucose and was bubbled with 95% O2-5% CO2 mixture.  The pH was 

maintained at 7.4.  After the heart began spontaneous contraction, a small incision was 

made in the left atrium.  A latex balloon connected to a pressure transducer via 

polyethylene cannula was inserted through the left atrium and mitral valve into the left 
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ventricle. The balloon was filled with enough water to increase end-diastolic pressure 

(EDP) to approximately 10 mmHg.  Left ventricular systolic pressure (LVSP), left 

ventricular developed pressure (LVDP), and heart rate (HR) were recorded (Chart 4.0, AD 

Instruments, Colorado Springs, CO). LVDP was calculated by subtracting EDP from the 

LVSP.  Rate pressure product (RPP), an index of myocardial oxygen demand and 

workload, was calculated by multiplying LVDP with HR.  Coronary flow reserve was 

measured by timed collection of coronary effluent.  Care was taken to maintain 

temperature of the heart at 37°C. 

 

Electrocardiography 

 
A separate set of four groups (n=6/group) was utilized for the assessment of 

electrocardiographic (ECG) changes indicative of doxorubicin cardiotoxicity [76,77].  

More specifically, this technique will further confirm the presence of doxorubicin-induced 

cardiotoxicity throughout the course of the investigation (10 weeks) as initially proposed 

by Fisher.  All animals were weighed at baseline and every 7-10 days for 8 weeks prior to 

the ECG analysis.  Animals were anesthetized using pentobarbital (50 mg/kg IP) followed 

by insertion of electrodes in the left front limb, right front limb, left hind limb, and right 

hind limb.  The electrodes were connected to an electrocardiography module (LDS Life 

Science, Valley View, CA) and data was recorded for 2-3 minutes per animal. The ST-

interval was measured in five consecutive complexes using Ponemah® physiology 

software (LDS Life Science, Valley View, CA).  ST-interval duration was measured at 
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baseline, 48-72 hours after each dose of doxorubicin (Days 0, 7, and 14 ± 2-3 days) and 

every 7-10 days thereafter until 8-weeks was attained. 
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METHODS (In Vitro Model) 

 

Isolation of Adult Cardiomyocytes 

 

Adult male outbred ICR mice (Harlan, Indianapolis, IN) were used in isolation of 

ventricular myocytes.  Ventricular myocytes were isolated using an enzymatic technique.  

Briefly, mice (n = 3/experiment) were anesthetized with pentobarbital (100 mg/kg IP) and 

the heart was quickly removed from the chest.  Within 3 minutes, the aortic opening was 

cannulated and placed onto a Langendorff perfusion system.  Next, the heart was 

retrogradely perfused (37°C) at a constant pressure of 55 mmHg for 5 minutes with a Ca+2 

-free bicarbonate-based buffer containing (in mM): 120 NaCl, 20 NaHCO3, 5.4 KCl, 1.2 

MgSO4, 1.2 NaH2PO4, 5.6 glucose, 10 2,3-butanedione monoxime, and 5 taurine, which 

was gassed with 95% O2-5% CO2 mixture.  The enzymatic digestion was commenced by 

adding collagenase type II (Worthington, 0.5 mg/ml each) and protease type XIV (0.02 

mg/ml) to the perfusion buffer and continued for ~15 minutes.  Following initial enzymatic 

digestion, 50 #M Ca+2 was added to the enzyme solution and the heart was perfused for 

an additional 10-15 minutes.  Digested ventricular tissue was cut into chunks and gently 

aspirated with a transfer pipette for facilitating cell dissociation.  The cell pellet was 

resuspended for a 3-step Ca+2 restoration procedure (i.e. 125, 250, 500 #M Ca+2).  

Freshly isolated cardiomyocytes were suspended in minimal essential medium (Sigma, 

Catalogue # M1018, pH 7.35-7.45) containing 1.2 mM Ca+2, 12 mM NaHCO3, 2.5% fetal 

bovine serum, and 1% penicillin-streptomycin.  Cells were plated onto 2-chamber slides, 
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which were pre-coated with 20 #g/ml mouse laminin in PBS + 1% penicillin-streptomycin 

for 1 hour.  Cardiomyocytes were cultured in the presence of 5% CO2 for 1 hour in a 

humidified incubator at 37°C.  Myocyte cultures were randomly assigned to one of 12 

treatments: (1) control; (2) sildenafil (1 #M); (3) doxorubicin (1 #M); (4) sildenafil (1#M) 

one hour prior to doxorubicin (1#M);  (5) 5-Hydroxydecanoate (5-HD), a mitoKATP 

channel blocker (100 #M); (6) 5-HD (100 #M) one hour prior to doxorubicin (1 #M); (7) 

5-HD (100 #M)+ sildenafil (1 #M); (8) 5-HD (100 #M)+sildenafil (1 #M) one hour prior 

to doxorubicin (1 #M); (9) NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide 

synthase (NOS) inhibitor (100 #M); (10) L-NAME (100 #M) one hour prior to 

doxorubicin (1 #M); (11) L-NAME (100 #M)+ sildenafil ( 1 #M); or (12) L-NAME (100 

#M)+ sildenafil (1 #M) one hour prior to doxorubicin (1#M).  Slides were incubated for 

18 hours followed by several washes in 1X PBS prior to analysis. 

 

Cardiomyocyte Apoptosis (In Vitro) 

 
Cardiomyocyte apoptosis was evaluated via the terminal dUTP nick-end labeling method 

(TUNEL) using the ApoAlert™ DNA Fragmentation Assay Kit (BD Biosciences, Palo 

Alto, CA) according to manufacturer’s instructions. Equilibration buffer was used in place 

of working TdT reagent for use as a negative control.  DNAase-I was applied and used as a 

positive control.  Analysis was performed using a Nikon epifluorescent microscope with 

20x objective. A FITC filter cube was utilized in detection of apoptotic myocyte nuclei.  

An ultraviolet filter cube was utilized in detection of DAPI-stained myocyte nuclei.  



www.manaraa.com

41 

 

Apoptotic index (AI) was determined from counting TUNEL-positive myocyte nuclei from 

ten separate fields per treatment and expressed as a percentage.  
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Active Caspase-3 Detection 

 
Active Caspase-3 staining was determined using the CaspaTag™ In Situ Assay Kit 

(Chemicon, Temecula, CA) according to manufacturer’s instructions.  This assay is based 

on Fluorochrome Inhibitors of Caspases (FLICA). The inhibitor binds covalently to the 

active caspase.  This kit uses a carboxyfluorescein-labeled fluoromethyl ketone peptide 

inhibitor of caspases-3 and -7 (SR-DEVD-FMK), which emits a red fluorescence. The SR-

DEVD-FMK probe enters each cell and covalently binds to reactive cysteine residue on the 

large subunit of the active caspase heterodimer, thereby inhibiting enzymatic activity.  The 

bound labeled reagent is retained within the cell. The red fluorescent signal is a direct 

measure of active caspase-3 in the cell at the time the reagent was added.  After application 

of CaspaTag™ reagent and Hoechst, cells were immediately examined using a Nikon 

epifluorescent microscope with rhodamine (Active Caspase-3) and ultraviolet (Hoechst) 

bandpass filters.  
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Assessment of Mitochondrial Membrane Potential (!"m) 

 

Loss of ""m was assessed using epifluorescent microscopy.  Cultured adult mouse 

ventricular myocytes were stained with 5,5’, 6,6’-tetrachloro-1, 1’, 3,3’-

tetraethylbenzimidazole-carbocyanide iodine (JC-1, Biocarta, San Diego, CA) after an 18 

hour incubation.  Cells were incubated with 2 #g/ml JC-1 for 10 minutes at 37ºC.  After 

washing with 1xPBS, cells on chamber slides were scanned with a Nikon epifluorescent 

microscope using a 20x objective lens.  Fluorescence was analyzed using a Texas Red-

FITC filter cube.  Red emission of the dye represented a potential-dependent aggregation 

in the mitochondria, reflecting ""m.  Green fluorescence represented the monomeric form 

of JC-1, appearing in the cytosol after mitochondrial membrane depolarization.  The ratio 

of mitochondrial aggregates (red) to the monomeric form of JC-1 (green) was analyzed 

using Q-Capture® Professional image analysis software (QImaging, Burnaby, B.C. 

Canada).  Myocytes were counted from ten separate fields per group and expressed as a 

ratio of mitochondrial aggregates to the monomeric form of JC-1. 
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Cell Viability Assay  

 
In order to determine if sildenafil affects the antitumor efficacy of doxorubicin, a highly 

effective and accurate technique, using PC-3 prostate cancer cell line was utilized.  PC-3 

prostate cancer cells (American Cell Culture, Manassas, VA), which are p53-deficient and 

susceptible to doxorubicin, were cultured in F12-K medium supplemented with 10% fetal 

bovine serum. Approximately 4,000 PC-3 cells/well were plated into one-half of a 96-well 

dish while the other half of the 96-well dish was incubated with 8,000 PC-3 cells/well and 

allowed to attach overnight. Lane 1 consisted of PC-3 cells plus culture media alone.  Lane 

2 was treated with doxorubicin (80 nM).  Lane 3 was treated with doxorubicin (1 uM).  

Lane 4 was treated with sildenafil (1 uM) one-hour before doxorubicin (80 nM).  Lane 5 

was treated with sildenafil (1 uM) one-hour before doxorubicin (1 uM).  Lane 6 was 

treated with sildenafil (1 uM).  Lane 7 was treated with sildenafil (10 uM).  Wells 1-3 & 7-

9 of Lane 8 were treated with sildenafil (10 uM) one-hour before doxorubicin (1 uM).  

Wells 4-6 & 10-12 of Lane 8 were treated with PC-3 cells in culture media only. Cell 

viability or the number of surviving cells was measured 4 days after doxorubicin 

application with CellTiter-Blue( Cell Viability Assay according to manufacturer 

instructions (Promega).  CellTiter-Blue( reagent (20ul/well) was added and incubated for 

one-hour before recording absorbance at 570nm and 600 nm using a VersaMax microplate 

reader with SoftMaxPro software (Molecular Devices).  The average absorbance (600nm) 

values of the culture medium background was subtracted from all 570nm values of 

experimental wells.  Next, the 570-600nm absorbance versus concentration of test 

compound was analyzed. The CellTiter-Blue( Cell Viability Assay uses the indicator dye, 
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resazurin, to measure the metabolic activity of cells as an indicator of cell viability.  Viable 

cells, for example, are capable of reducing resazurin to the highly fluorescent resafurin. 

Because non-viable cells cannot reduce resazurin to resafurin, the fluorescence or 

absorbance is negligible.  The absorbance obtained from this assay is proportional to the 

number of viable cells.   

 

Flow Cytometry 

To confirm our results demonstrating the inability of sildenafil in affecting the antitumor 

efficacy of doxorubicin in vitro using PC-3 cancer cells, we subsequently measured cell 

viability using flow cytometry (Beckman Coulter Flow Cytometer; 488nm laser). 

Calibration for doxorubicin autofluorescence and propidium iodide was conducted before 

analysis.  The experimental groups included: control, doxorubicin (1, 2 and 5 µM), 

sildenafil (1 and 2 µM), doxorubicin (1 #M)+ sildenafil (1 or 10 #M), doxorubicin (2 

#M)+sildenafil (1 or 10 #M), and doxorubicin (5 #M)+sildenafil (10 #M).  In this 

approach, instead of using a compound that is actively reduced by viable cells (resazurin), 

we utilized the impermeable nucleic acid dye, propidium iodide (Sigma-Aldrich), to detect 

the amount of non-viable cells.  Since non-viable cells would have disruption of their 

nuclear membrane, it is expected that necrotic cells would actively stain with propidium 

iodide and be detected using flow cytometry.  Controls containing doxorubicin only, 

doxorubicin + propidium iodide, propidium iodide + media, and media only were added as 

additional controls. Flow cytometric data are depicted in Appendix E. 
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Statistics 

 
 
Data are presented as mean ± SEM.  Difference between groups was analyzed with 

unpaired t test or one-way ANOVA followed by Tukey-Kramer HSD post-hoc test (JMP, 

Version 5, SAS Institute Inc., Cary, NC). P<0.05 was considered as statistically significant. 
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RESULTS (In Vivo) 

 

Cardiomyocyte apoptosis 

 
Prior studies have implicated cardiomyocyte apoptosis in the development of chronic 

cardiomyopathy induced by doxorubicin administration [75,76].  The following results 

indicate the powerful cardioprotection of sildenafil via mitigation of cardiomyocyte 

apoptosis in the experimental group receiving sildenafil.  Data from both TUNEL and 

ISOL techniques demonstrated significant cardiomyocyte apoptosis in doxorubicin group 

compared to saline control at 2, 4, 6, and 8-weeks post-treatment (P<0.001).  Sildenafil 

attenuated doxorubicin -induced cardiomyocyte apoptosis when administered one hour 

before each of three separate treatments with doxorubicin (5 mg/kg IP; 15 mg/kg total 

cumulative dose). These results were similar to saline control animals [Figure 8 A-D]. 
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Figure 8A.  Apoptotic Index using both TUNEL and ISOL techniques in experimental 

groups at (A) 4 and (B) 6 weeks post treatment. 
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Figure 8B.  Apoptotic Index using both TUNEL and ISOL techniques in experimental 

groups at (C) 8 and (D) 10 weeks.  
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Bcl-2 expression  

 
The Bcl-2 family of proteins provides maintenance of the integrity of the outer 

mitochondrial membrane [78].  Pro-apoptotic Bcl-2 family of proteins including Bax, Bak, 

and t-Bid can integrate into the outer mitochondrial membrane in response to apoptotic 

stimuli inducing cytochrome-c release via mitochondrial transition permeability pore 

(MPTP) formation [79, Figure 10].  However, binding of Bcl-2 or Bcl-XL inhibits 

membrane integration of pro-apoptotic Bcl-2 family of proteins and subsequent MPTP 

formation. [80, 81].  In the present study, a significant decrease in Bcl-2 expression was 

observed at 2-weeks and 8-weeks post treatment in the doxorubicin group compared to 

both sildenafil + doxorubicin and control group.  Moreover, Bcl-2 expression was 

maintained when sildenafil was given one hour before doxorubicin treatment [Figure 9].  
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Figure 9. Western Blot of Bcl-2 Protein at 2 Weeks after Treatment (week 4), (A) and 8 

weeks after treatment (week 10) (B).  Bar Graph represents densitometric quantification 

from 3 individual hearts per group, which is normalized against the actin level for each 

sample.  Data are Mean±SEM.  Abbreviations are defined in Figure 7 legend. 
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Figure 10.   Illustration demonstrating the effect of PDE-5A inhibition on mitochondrial 
bioenergetics in the presence of doxorubicin.  &  2005 Patrick W. Fisher DO, PhD. 
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Doxorubicin-induced myofibrillar disarray (desmin distribution) 

 
At 8-weeks post treatment, doxorubicin group exhibited myofibrillar disarray as evidenced 

by abnormal desmin distribution, lack of Z-line integrity, and abnormal cytoplasmic 

desmin aggregation. In contrast, sildenafil+doxorubicin group displayed normal desmin 

distribution as evidenced by immunofluorescent staining throughout the entire cytoplasm 

with clear delineation of Z-lines.  This was similar to both control and sildenafil +saline 

groups. [Figure 11] 

Furthermore, PDE-5A expression was significantly reduced in the doxorubicin-only group 

at 8 weeks post treatment.  This reduced expression and lack of localization to the z-line 

was most marked in the area of the cardiomyocyte where desmin disruption was evident 

[Appendix B, C]. 
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Figure 11.  Immunofluorescent staining for desmin (green) in cryo-sections from mice in 

the saline control (A), sildenafil (B), sildenafil+doxorubicin (C), and doxorubicin (D & E) 

groups at 8 weeks after treatment.  In control, sildenafil, and sildenafil+doxorubicin groups 

(A, B, C), desmin staining is present throughout the entire cytoplasm and is observed at the 

Z-lines demonstrated as green striations (arrowheads). In the doxorubicin-treated group  

(D, E), obvious disruption of the desmin network is present, with loss of Z-line 

localization. Areas of decreased uptake of anti-desmin antibody are apparent (star). 

Nucleus (N).  Magnification X600; E, image acquired with a Zeiss LSM 510 Confocal 

Microscope (Figure E: &  2005 Patrick W. Fisher, DO, Phd)  

E 

N 

N 
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Electrocardiography (ECG)  

 
Prior studies in mice demonstrated a strong correlation between ST-interval duration and 

doxorubicin-induced cardiotoxicity [76,77].  In contrast to ECG recordings in humans, the 

ECG (Lead II) in mice does not contain an ST-segment.  The T-wave immediately follows 

the QRS complex [76,77].  Prolongation of the ST-interval in doxorubicin-treated mice is 

secondary to an increase in action potential duration (APD) [77].  Le Marc et al [82] 

observed an increase in APD in Purkinje fibers after incubation with doxorubicin.  

Furthermore, in isolated cardiomyocytes exposed to doxorubicin, Jabr et al [83] observed 

APD prolongation resulting from doxorubicin -generated ROS.  In experimental groups 

receiving doxorubicin, a significant progressive increase in ST-interval was observed at all 

time points compared to baseline [Figure 12].  Moreover, the most marked increase in ST-

interval occurred between week 4 and week 8.  Furthermore, ECG’s of the control and 

sildenafil+ doxorubicin group did not change during the course of the study.  Sildenafil 

significantly protected against ST-interval prolongation throughout the study period. 

[Figure 12] 

 

 



www.manaraa.com

56 

 

 

Figure 12. Electrocardiographical Analysis of ST-Prolongation in mice (lead II). Effect of 

sildenafil on ST-interval prolongation after doxorubicin treatment. ST interval was 

measured with the use of lead II. A, ST-interval prolongation over time. Representative 

tracings of control (B), sildenafil+doxorubicin (C), and doxorubicin only (D) are shown. 

Data are mean±SEM (n=6/group). Abbreviations are as defined in Figure 7 legend. 
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Effect of sildenafil on cardiac function in doxorubicin-treated animals 

 
Our data shows a significant decline in LVDP in the saline+ doxorubicin group compared 

to control at 2 weeks post treatment (27% vs control; 24% vs sildenafil+ doxorubicin) 

[Table 1].  Decline in contractility as measured by rate pressure product (RPP) persisted 

through 8 weeks after treatment cessation in the saline+ doxorubicin group. Animals 

treated prophylactically with sildenafil before doxorubicin demonstrated RPP that 

remained unchanged from control over 8-week post-treatment period.  

[Figure 13] 

 

 

Figure 13.  Bar graph representing rate pressure product in mouse hearts via Langendorff 

mode at 4, 6, and 10-weeks post-treatment. Data are mean ± SEM (n = 6/group/time point).
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Table 1.  Hemodynamic Indices  

                        Week 2                  Week 4            Week 8
 

                HR      LVDP       RPP               HR        LVDP        RPP             HR        LVDP       RPP 

Group    (bpm)    (mmHg)  (mmHg•min-1)       (bpm)      (mmHg) (mmHg•min-1)    (bpm)    (mmHg) (mmHg•min-1)

 
Control     384±4      99±3     35116±1121       410±1         92±1      34851±1057        412±8        90±1     34159±651 
SIL           393±5     101±3   36905±1342*    399±11      106.6±3   39762±1588*     412±4†       93±1    35296±437* 

DOX    439±11* 72±4*    28099±1562*    374±13*     68±4*    22108±1248*†   365±15*†    62±3*† 19716±947*† 

SIL+DOX   381±6**  95±3** 33471±1290**  381±11**  102±3      35861±1238**   409±2**     92±1   34827±413** 
 

* P <0.05 vs. control, ** P <0.05 vs. DOX, † P <0.001 vs. Week 2. 

 

Abbreviations: HR= heart rate; LVDP= left ventricular developed pressure; RPP= rate pressure product; 

SIL= sildenafil+saline; SIL+DOX= sildenafil+doxorubicin; DOX= saline+doxorubicin 

 

&  2005 Patrick W. Fisher, DO, PhD. 
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RESULTS (IN VITRO) 

 

Cardiomyocyte Apoptosis 

 
Treatment of cardiomyocytes with doxorubicin (1 #M) for 18 hours resulted in a 

significant increase in TUNEL (+) nuclei as indicated by Apoptotic Index (AI) of 0.61 ± 

0.09%, which was similar to both L-NAME+sildenafil+doxorubicin (0.62±0.08%) and 5-

HD+sildenafil+doxorubicin (0.60±0.10%) groups.  In contrast, a significant inhibition of 

apoptosis was evident in the sildenafil+doxorubicin (0.078±0.031%) group, which was 

similar to control (0.078 ± 0.032%) [Figure 14].  Additionally, active caspase-3 expression 

increased in the doxorubicin, sildenafil+L-NAME+ doxorubicin, and 5HD+sildenafil+ 

doxorubicin groups compared to sildenafil+ doxorubicin and control groups. [Figure 15] 

 

        

 

Figure 14.  Apoptotic Index of Adult Ventricular Myocytes (TUNEL). 
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Figure 15A. Activated caspase-3 in adult mouse ventricular myocytes (red; left 

column) with myocyte nuclei stained with Hoechst (blue; right column). A, 

Control; B, doxorubicin; C, sildenafil plus doxorubicin; Magnification x200; n=3. 
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Figure 15B.  Activated Caspase-3 in Adult Ventricular Cardiomyocytes 

D, sildenafil (1 µM); E, L-NAME (100 µM) plus sildenafil plus doxorubicin; F,    

5-HD (100 µM) plus sildenafil (1 µM) plus doxorubicin. Magnification x200; n=3. 
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Assessment of Mitochondrial Membrane Potential (!"m) 

 

Exposure of adult mouse ventricular myocytes to doxorubicin (1 µM) for 18 hours resulted 

in dissipation of !"m as illustrated via JC-1 immunofluorescent staining [Figure 16].  In 

contrast, myocytes pretreated with sildenafil (1 µM) before treatment with doxorubicin 

demonstrated preservation of the !"m.  The latter result was similar to both control and 

sildenafil+ doxorubicin groups [Figure 17].  However, dissipation of !"m occurred in 

both the L-NAME (100 µM)+sildenafil+ doxorubicin and 5-HD (100 µM)+sildenafil+ 

doxorubicin groups. [Figure 16] 
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Figure 16.  Effect of Sildenafil on ""m in Adult Ventricular Cardiomyocytes.  Red 

Fluorescence represents the mitochondrial aggregate form of JC-1, indicating intact 

mitochondrial membrane potential.  Green Fluorescence represents the monomeric 

form of JC-1, indicating dissipation of ""m. A, Control; B, sildenafil (1 #M); C, 

doxorubicin (1 #M); D, sildenafil (1 #M) plus doxorubicin (1 #M); E, L-NAME (100 

#M) plus sildenafil plus doxorubicin; F, 5-HD (100 #M) plus sildenafil plus 

doxorubicin.
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Figure 17.  Ratio of Mitochondrial Aggregates to the Monomeric Form of JC-1.  Data are 
expressed as Mean ± SEM.   
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Effect of Sildenafil on the Antitumor Efficacy of Doxorubicin 

 

Cell Viability Assay 

Using absorbance as a measure of cell viability, the administration of doxorubicin at a 

concentration of 80 nM did not significantly inhibit the growth of PC-3 cells in vitro.  In 

contrast, doxorubicin at a concentration of 1 uM significantly decreased the ability of PC-

3 cells to reduce resaruzin to the highly fluorescent resafurin.  In other words, 

doxorubicin at a concentration of 1 uM killed approximately 65% of PC-3 cells when 

administered alone.  Additionally, the administration of sildenafil at concentrations of 

either 1 uM or 10 uM one-hour before the administration of doxorubicin, did not effect 

the antitumor efficacy of doxorubicin in PC-3 cells in vitro.  Moreover, when sildenafil (1 

uM or 10 uM) was administered alone, the viability of PC-3 cells was not significantly 

altered.  
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Figure 18.  Photograph of 96-well Microplate used in the Cell Viability Assay of 

sildenafil on the antitumor efficacy of doxorubicin. Lane 1 & Lane 8 (Wells 4-6 &10-12), 

Media only; Lane 2, DOX (80 nM); Lane 3, DOX (1 uM); Lane 4, sildenafil 

(1uM)+DOX (80 nM); Lane 5, sildenafil (1 uM)+DOX (1 uM); Lane 6, sildenafil (1 uM), 

Lane 7, sildenafil (10 uM); Lane 8 (Wells 1-3 & 7-9), sildenafil (10 uM)+DOX 1 uM). 

© 2005 Patrick William Fisher, DO, PhD 
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Figure 19.  Cell Viability of PC-3 Prostate Cancer Cells (in vitro).  The absorbance is 

proportional to the number of viable cells. ! 2005 Patrick W. Fisher, DO, PhD. 
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Figure 20. Flow cytometry data assessing the percentage of cell death in PC-3 prostate 

cancer cells in vitro after treatment with varying concentrations of doxorubicin with or 

without sildenafil, A.  Cell death (% of PC-3 prostate cancer cells) versus doxorubicin 

concentrations (1, 2, and 5 µM), B.  Cell Death was determined using propidium iodide 

(50 µg/ml).   Subtraction of doxorubicin autofluorescence was performed prior to flow 

cytometric analysis. Data are Mean +/- SEM.  © 2005 Patrick William Fisher, DO, PhD 

A 

B 
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DISCUSSION 

 
 
For the first time, it is demonstrated that treatment with clinically relevant doses of 

sildenafil (0.7 mg/kg IP) one hour prior to doxorubicin resulted in cardioprotection from 

doxorubicin-induced cardiotoxicity.  More specifically, the aforementioned data illustrate 

the capacity of sildenafil in attenuation of cardiomyocyte apoptosis, maintenance of the 

!"m, preservation of myofibrillar integrity, prevention of left ventricular dysfunction, and 

prevention of ST-prolongation consistent with chronic doxorubicin toxicity 8-weeks after 

the final of three treatments. 

 

The initial hypothesis behind pharmacological preconditioning with sildenafil was that the 

vasodilatory action of sildenafil could potentially release endogenous mediators of 

preconditioning such as adenosine or bradykinin from endothelial cells triggering 

phosphorylation of nitric oxide synthase (NOS) and subsequent release of nitric oxide 

(NO) [63].  The generation of NO could then serve to activate sGC with increased 

formation of cyclic guanyl monophosphate (cGMP).  Increase in cGMP is believed to be 

responsible for activation of protein kinase G (PKG) and subsequent opening of mitoKATP 

channels in acute and delayed cardioprotection [63].  Previously, it was demonstrated that 

sildenafil-induced delayed preconditioning was linked to a NOS-dependent mechanism in 

mice [64].  Moreover, both the acute and delayed cardioprotective effects of sildenafil in 

an in vivo rabbit model were blocked by 5-HD, supporting the significance of mitoKATP 

channel opening in sildenafil-induced cardioprotection. 
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In addition to the present in vivo model of sildenafil-induced cardioprotection from 

doxorubicin as developed by Fisher, an in vitro model of adult mouse ventricular myocytes 

was utilized to further investigate the mechanism of protection by sildenafil.  In this study, 

prophylactic administration of sildenafil inhibited doxorubicin-induced !"m dissipation, 

caspase-3 activation, and cardiomyocyte apoptosis.  This protection was completely 

abolished by both L-NAME and 5-HD.  These findings infer that sildenafil-mediated 

protection from doxorubicin-induced cardiomyocyte apoptosis is NOS-dependent and 

establishes a significant role of mitoKATP channel opening in sildenafil-induced 

cardioprotection. 

 

The exact mechanism of NO/cGMP in protection from doxorubicin cardiotoxicity is not 

fully explicable.  It has been shown that doxorubicin-generated H2O2 induces a massive 

increase in eNOS gene transcription followed by generation of extremely high levels of 

NO favoring potentiation of ROS and reactive nitrogen species [84].  In contrast, exposure 

to low nonlethal levels of endogenous NO induces adaptive responses by continuous 

stimulation of sGC with maintenance of basal cGMP levels, rendering cells resistant to 

lethal concentrations of NO or peroxides [85].  Moreover, it has been reported that 

physiologically stimulated sGC by NO preserved !"m and inhibited apoptosis [86,87] and 

caspase-3 activation [88].  From the current results, it is plausible that pretreatment with 

sildenafil prior to an onslaught of doxorubicin-generated free radicals augments inherent 
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cellular adaptive mechanisms mediated by endogenous NO/cGMP, leading to maintenance 

of mitochondrial bioenergetics and inhibition of apoptosis. 

 

Doxorubicin-induced cardiomyocyte apoptosis occurs via both the extrinsic and intrinsic 

pathways [89,90].  However, using this model substantiates the significance of the intrinsic 

pathway of apoptosis in both normal and pathophysiological processes.  Prior studies have 

identified the mitochondria as the main target of doxorubicin accumulation in cardiac cells 

[91].  Mitochondrial NADH dehydrogenase contributes to doxorubicin-generated ROS 

production via redox cycling of doxorubicin to its semiquinone [92].  Furthermore, 

mitochondrial concentrations of doxorubicin (5-50 µM) are several folds greater than 

simultaneous clinically relevant serum concentrations (0.1-1uM) [93].  Consequently, the 

relatively limited supply of both catalase and glutathione peroxidase (GSH-Px) is rapidly 

expended in the heart; thus creating an environment that promotes hydroxyl radical 

production [94].  Accordingly, the accumulation of ROS results in dissipation of the !"m, 

direct activation of the MPTP, and cytochrome-c release followed by caspase-3 activation 

and DNA fragmentation consistent with apoptosis [95]. 

 

In the present study, a significant decline in Bcl-2 expression both at 2-weeks and 8-weeks 

post treatment in the doxorubicin group compared to the sildenafil+doxorubicin group and 

control was observed, suggesting an important role of Bcl-2 in altering the pathological 

process leading to end-stage heart failure.  Furthermore, significant differences in desmin 

distribution between the doxorubicin group compared to all other groups was evident 
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[FIGURE 11, Appendix B].  In the doxorubicin group, desmin distribution was clearly 

disrupted with areas of decreased staining in the cytoplasm consistent with desmin 

aggregation.  In contrast, sildenafil+doxorubicin group displayed an intact desmin network 

similar to control.  Although it is known that cardiomyocyte apoptosis contributes to 

dilated cardiomyopathy and heart failure, there is increasing evidence that intermediate 

filaments such as desmin are involved in this pathological process [96].  Recently, 

Dinsdale et al [97] demonstrated caspase-cleavage of intermediate filaments during 

apoptosis.  Moreover, a study using a transgenic mouse model (desmin -/-) of desmin-

related cardiomyopathy (DRM) demonstrated the ability of Bcl-2 overexpression in 

preventing DRM as evidenced by prevention of cardiomyocyte apoptosis and preservation 

of cardiac contractility [96].  In addition, Wang et al [98] demonstrated the disruption of 

desmin and formation of intracytoplasmic aggregates in a mouse model of DRM.  

Furthermore, Heling et al [99] illustrated the disorganization and accumulation of desmin 

in explanted human heart specimens from patients with dilated cardiomyopathy.  

Consistent with findings by Heling [99] and Wang [98], we demonstrated disruption of 

desmin in the doxorubicin group compared with the sildenafil+doxorubicin and control 

groups.  Moreover, morphological changes including disruption of normal desmin 

distribution in myocytes as observed in DRM are similar to those seen in other forms of 

cardiomyopathy and heart failure [100].  Because intermediate filaments participate in 

transmission of active force [101], it is plausible that disruption of the filamentous network 

involving desmin may significantly impair contractile force and result in sarcomere 

fragility.  Also, since desmin is known to adhere to the mitochondria in the same location 
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where the MPTP is formed, it is conceivable that disruption of desmin either through 

repeated strain on the contractile apparatus resulting from impaired contractility or through 

direct cleavage from activated caspases may contribute to MPTP formation, cytochrome-c 

release, and apoptosis.  

 

In the current study, an 8-week post-treatment strategy was utilized, which is adequate in 

demonstrating many of the pathological findings of chronic doxorubicin-induced 

cardiotoxicity. Moreover, it provides an animal model that parallels the clinical 

progression of this disease in humans.  In addition, it serves as a unique and powerful 

model to understand many of the common factors that are shared by most forms of clinical 

cardiomyopathies.  

 

Results from in vitro studies using PC-3 cancer cells testing the effect of sildenafil on the 

efficacy of the antineoplastic action of doxorubicin provide relevant pre-clinical safety and 

efficacy data that are required prior to eventual clinical trials in humans.    

 

Because sildenafil has proven to be relatively safe and effective in treating both erectile 

dysfunction and pulmonary hypertension [102,103], it is conceivable that sildenafil may 

provide an additional tool to hematologists and oncologists in preventing cardiotoxicity.  

Moreover, sildenafil prophylaxis during doxorubicin treatment may potentially allow an 

increase in the dose of doxorubicin beyond the cumulative limitation of 450-600 mg/m2 

[104], thereby expanding its therapeutic window. Studies using flow cytometry assessing 
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the cytotoxicity of doxorubicin on PC-3 cancer cells in vitro, demonstrate a powerful 

synergistic effect when sildenafil is combined with doxorubicin.  This in vitro effect of 

sildenafil on the antineoplastic action of doxorubicin is presently being evaluated by Fisher 

et al using an in vivo nude mouse model with subcutaneously injected human breast cancer 

cells known to be susceptible to doxorubicin.   

 

The powerful synergy between doxorubicin and sildenafil in killing PC-3 prostate cancer 

cells in vitro is intriguing.  However, it also raises concerns regarding the possibility of 

potentiating the side effects of doxorubicin in non-cardiac cells where cell turnover is 

considered a normal physiological process.  In the aforementioned chronic mouse model of 

used in our investigations, no evidence of potentiation of doxorubicin toxicity in non-

cardiac cells was observed.  Although not investigated in our model, the addition of 

sildenafil in patients undergoing chemotherapy with doxorubicin may lead to an increase 

in doxorubicin-induced toxicity in hematopoietic stem cells.  This could prove fatal during 

the induction phase of chemotherapy.  Moreover, it may prolong the time that patients 

remain neutropenic, thereby exposing them to the additional risk of opportunistic 

infections.  Further studies are warranted in examining whether this synergistic effect of 

sildenafil with doxorubicin is translated to non-neoplastic cells in humans.   
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The mechanism responsible for the synergy of sildenafil in the presence of doxorubicin in 

PC-3 prostate cells in vitro is not fully explicable.  However, numerous studies using PC-3 

cell lines in examining mechanisms of chemoresistance have elucidated several intriguing 

hypotheses—many implicating NO as a key mediator in chemosensitization [114-119]. 

Moreover, many cancer cells develop chemoresistance by overexpressing Bcl-2 and  

Bcl-XL, key mediators of apoptosis under the transcriptional regulation of NF-)B [115].    

In fact, Huerta-Yepez et al [115] demonstrated the ability of NO donors in down regulating 

the expression of Bcl-XL via inhibition of NF-)B activity resulting in the sensitization of 

cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).  This 

ultimately resulted in activation of the mitochondrial pathway of apoptotic cell death.  

 

Furthermore, there is evidence suggesting that suppression of endogenous nitric oxide may 

play a key role in hypoxia-induced chemoresistance [119].  Moreover, it has been 

demonstrated that hypoxia inducible factor (HIF-1) DNA binding is inhibited by NO in the 

presence of hypoxia [118]. In addition, NO has also been demonstrated to inhibit HIF-1$ 

accumulation in cells under hypoxic conditions [116].  It is therefore not surprising that 

PC-3 cells contain all three well-known isoforms of nitric oxide synthase (NOS): eNOS, 

iNOS, and nNOS [115].  
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In another study by Frederiksen et al [116], exposure of hypoxia to human breast 

carcinoma cells resulted in decreased endogenous cGMP, further implicating the role of 

NO in chemoresistance.  In fact, in a follow-up study, Frederiksen et al provided further 

support implicating that administration of low concentrations of NO mimetic agents can 

prevent acquired drug resistance in PC-3 prostate cancer cells to doxorubicin [114].   

 

In the present studies illustrating the synergistic effect of sildenafil in doxorubicin-induced 

antineoplastic action in PC-3 cells, it is plausible that the inhibition of PDE-5, maintains or 

upregulates production of NO to physiological levels thereby “sensitizing” this cancer cell 

line to doxorubicin-induced cell death.  Further studies will help unravel this conundrum 

and provide a better understanding of the role of PDE-inhibitors in the pathophysiology of 

cell signaling mechanisms involved in the proliferation of many neoplastic diseases. 

 

Future Investigations 

Further studies aimed at attenuating the detrimental effects leading to chronic doxorubicin 

cardiomyopathy should be investigated.  Some of the potential targets include the 

examination of the transcription factors, heat shock factor-1 and GATA-4, in addition to 

heat shock proteins and their relationship with cGMP/sGC in cardiomyocytes. 

 

An early event in the cardiotoxic effect of the antitumor drug doxorubicin is GATA-4 

depletion, which in turn causes cardiomyocyte apoptosis. Studies by Aries et al [110] 

indicate that the transcription factor GATA-4 is antiapoptotic and may be vital for the 
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adaptive stress response of the adult heart. As such, the ability to regulate the genes 

responsible for apoptosis in the heart via transcription factor modulation offers promise in 

the area of heart failure [Figure 21] 

 

The transcription factors GATA-4 and GATA-6 regulate cardiomyocyte hypertrophy in 

vitro and in vivo.  Recent studies have shown that GATA-4 might also play a role in 

survival of adult cardiac myocytes [110,111].  This transcription factor may potentially 

regulate pathophysiological conditions such as myocardial ischemia-reperfusion injury, 

ischemic preconditioning,  and environmental and drug-induced cardiomyopathies where 

apoptosis and survival of cardiac myocytes play an essential role. [112]  

 

Additionally, because of the protective effects of the anti-apoptotic protein, Bcl-2, in 

preventing doxorubicin-induced cardiomyopathy as demonstrated in vivo [113], it would 

be intriguing to ascertain the effect of PDE-5 inhibition in preserving the DNA-binding 

activity of GATA-4 and its subsequent ability to preserve basal levels of Bcl-2 following 

treatment with doxorubicin. Studying the transcription and phosphorylation of GATA-4 in 

vivo can accomplish this.   

 

Moreover, further investigations are warranted that may lead to a better understanding of 

the role and significance of PDE-5 localization in cardiomyocytes in vivo and its 

relationship to subsequent contractile dysfunction.  PDE-5 expression in mouse 

cardiomyocytes has previously been demonstrated in our laboratory by Das et al.  
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Moreover, Takimoto et al [112] have also demonstrated PDE-5 expression in frozen 

sections from adult NOS3 (–/–) mice and their wild-type counterparts.  Furthermore, the 

study by Takimoto et al suggests that the effects of cGMP on PKG-1 activation is 

dependent on z-band localization of PDE-5A, thus enabling modulation of PKA and 

subsequent calcium-induced contractility by sildenafil. Moreover, they suggest that acute 

NOS3 inhibition removes the critical substrate to the PDE-5A complex and thus eliminates 

the antiadrenergic effect of sildenafil. In fact, they infer that chronic NOS3 inhibition or 

the use of NOS3 (–/–) mice results in the loss of PDE-5A from the z-band, resulting in the 

elimination of sildenafil’s effectiveness in maintaining contractility even in the presence of 

exogenous NO.  Although intriguing, their rationale for PDE-5A localization to the z-band 

is not entirely complete.  In recent studies by Fisher [Appendix B, C], clear evidence exists 

demonstrating the loss of PDE-5A expression and lack of localization at the z-band in 

frozen sections from doxorubicin-only treated mice at 8-weeks post-treatment (total 

cumulative dose= 15mg/kg IP).   It is plausible that decreased contractility from desmin 

disruption subsequently results in the inability of PDE-5A from localizing to the z-band.  

Moreover, the ability of caspase-3 in cleavage of desmin at the z-band may be interrelated 

to the inability of PDE-5A in locating to the z-band.  

 

One hypothesis that requires further investigation is that PDE-5A localization to the z-band 

is associated with protection of desmin cleavage by activated caspase-3.  Because NO is 

known to inactivate caspase-3 via reversible binding of NO to the active cysteine residue 

on the large subunit via s-nitrosylation, it is plausible to that maintaining myofibrillar 
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integrity and contractile function at the z-band is coordinated through PDE-5A inhibition 

with subsequent physiological available “pools” of NO that are available to inactivate the 

detrimental actions of active caspase-3 on myofibrillar disruption of intermediate 

filaments. 
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Figure 21.  Potential targets for further investigation on the molecular mechanisms of 

doxorubicin-induced cardiotoxicity.  
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Appendix A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Confocal microscopic image illustrating desmin distribution (green) and DAPI-stained 
nuclei (blue) in a cryosection from a mouse left ventricle at 8 weeks post treatment with 
doxorubicin [Total Cumulative dose= 15mg/kg IP]).  
&  2005 Patrick W. Fisher, DO, PhD. 
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Appendix B 

 
 
 
 

 
 
Confocal microscopic image of cryosection from a mouse left ventricle, demonstrating 
colocalization of desmin (green) with PDE-5A (red)--in a doxorubicin-only treated animal 
8 weeks post treatment (Total cumulative dose = 15 mg/kg IP).  Nuclei are stained blue 
with DAPI.  * Desmin disruption; PDE-5A localization (arrows).   

&  2005 Patrick W. Fisher, DO, PhD. 
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Appendix C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
A, Confocal microscopic image of cryosection from a mouse left ventricle, 
demonstrating colocalization of desmin (green) with PDE-5A (red)--in a doxorubicin-
only treated animal 8 weeks post treatment (Total cumulative dose = 15 mg/kg IP).  
Nuclei are stained blue with DAPI. B, Same image without desmin fluorescence; only 
PDE-5A and DAPI-stained nuclei are visible. * Desmin disruption; PDE-5A localization 

(arrows).   &  2005 Patrick W. Fisher, DO, PhD. 
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Confocal microscopic image of cryosection from a mouse left ventricle in a 
doxorubicin-only treated animal 8 weeks post treatment (Total cumulative dose = 15 
mg/kg IP), demonstrating PDE-5A (red), A; Phase image, B; desmin (green), C; Nuclei 
stained with DAPI (blue), D; and merged image of all three fluorophores, E. 
 &  2005 Patrick W. Fisher, DO, PhD. 
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